Firm Dynamics, Monopsony and Aggregate Productivity Differences

SAEe

Tristany Armangué-Jubert Tancredi Rapone Alessandro Ruggieri December 2024

- Imperfect competition in labor markets leads to aggregate efficiency losses (Manning, 2011; Card, 2022).
 - main channel: static labor misallocation.
- Large output losses from dynamic misallocation (Guner et al. 2016; Bento and Restuccia 2018)
 - endogenous amplification from selection and human capital investment

Q: How does labor market power affect firm dynamics and aggregate productivity?

- Models of labor market power can be grouped into:
 - Oligopsony: Berger et al. 2022.
 - Neoclassical monopsony: Card et al. 2018, Dustmann et al. 2022, Armangué-Jubert et al. 2024.
 - Search: Jarosch et al. 2023, Berger et al. 2023.

- We document higher firm age, life-cycle firm growth, firm investment and lower markdowns in richer countries.
- We build a dynamic neoclassical monopsony model nested into an occupational-choice model as in Lucas (1978).
 - Innovations:
 - 1. Endogenous selection into entrepreneurship
 - 2. Dynamic investment into productivity growth.
- Perform several counterfactuals to quantify:
 - Share of differences in firm dynamics explained by labor market power.
 - Share of income losses attributable to the two novel channels.

- Labor market power accounts for 42 percent of cross country income differences.
- Selection into entrepreneurship and dynamic investment in productivity jointly account for approximately 35% of the gains from eliminating labor market power.
 - Labor market power distorts the allocation of labor and profits, which results in distorted entry and investment policies.

- We use the World Bank Enterprise Surveys (WBES).
- Establishment level surveys, representative of non-agricultural and non-financial private firms with 5+ employees.
- Over 140 countries, we restrict analysis to the 31 countries with GDP per capita of over \$25,000.
- We compare the median local labor market across countries.
 - We define local labor markets as location-industry pairs.

Four Facts

- Measure N of risk-averse hand-to-mouth agents differing in:
 - entrepreneurial productivity, z;
 - entrepreneurial amenities, a.
- Upon entry, agents draw a pair of (z, a) from joint pdf $\Psi(z, a)$.

- Every period, agents choose to be either a worker or an entrepreneur
 - workers value wages and amenities of their employer;
 - entrepreneurs value profits and own amenities.
- Productivity z follows a Poisson process.
- Entrepreneurs can invest to improve their chances of productivity growth.
- Stochastic probability of exit, δ .
- Frictionless labor market clears every period.

Model: Problem of the Workers

• Per-period utility of worker *i* employed by entrepreneur *j*:

$$u(z_i, a_i, z_j, a_j) = \epsilon^L \ln(w_j) + a_j + v_{ij}$$

where v_{ij} are Type-I EV shock with location 0 and scale σ_{v} .

• Value of worker *i* employed by entrepreneur *j*:

$$U(z_i, a_i, z_j, a_j) = u(z_i, a_i, z_j, a_j) + \beta(1 - \delta) \mathbb{E}_{z_i} \max\{\tilde{U}(z_i, a_i), V(z_i, a_i)\}$$

where

$$\tilde{U}(z_i, a_i) = \sigma_{\nu} \ln \left(E \int_{\mathcal{Z} \times \mathcal{A}} \exp \left(\frac{U(z_i, a_i, z_k, a_k)}{\sigma_{\nu}} \right) \mu(z_k, a_k) dz_k da_k \right)$$

Model: Problem of the Workers II

• Probability that worker *i* chooses to work at firm *j*:

$$p_{ij} = \frac{\exp\left(\frac{U(z_i, a_i, z_j, a_j)}{\sigma_v}\right)}{E \int_{\mathcal{Z} \times \mathcal{A}} \exp\left(\frac{U(z_i, a_i, z_k, a_k)}{\sigma_v}\right) \mu(z_k, a_k)} dz_k da_k$$

• Labor supply to firm *j*:

$$L_{j} = L \int_{\mathcal{Z} \times \mathcal{A}} p_{ij} \phi(z_{i}, a_{i}) dz_{i} da_{i} = L \Theta \exp\left(\epsilon^{L} \ln(w_{j}) + a_{j}\right)$$

• Entrepreneurs operate the following technology:

$$Y_j = z_j \ln(L_j)$$

• Static wage posting:

$$\max_{w_j} \pi_j(z_j, a_j) = z_j \ln(L_j) - w_j L_j - c_f$$

subject to $L_j = L\Theta \exp\left(\epsilon^L \ln(w_j) + a_j\right)$

• Solution is an optimal wage schedule W(z, a).

Model: Problem of the Entrepreneurs II

• Dynamic investment decision:

$$V(z_i, a_i) = \max\{V^I(z_i, a_i), V^N(z_i, a_i)\}$$

where:

$$V^{I}(z_{i}, a_{i}) = \epsilon^{L} \ln(\pi_{j}(z_{i}, a_{i}) - c_{z}) + a_{i}$$
$$+ \beta(1 - \delta) \left(p_{i} \max\{V(z_{i+}, a_{i}), \tilde{U}(z_{i+}, a_{i})\} + (1 - p_{i}) \max\{V(z_{i-}, a_{i}), \tilde{U}(z_{i-}, a_{i})\} \right)$$

and

$$V^{N}(z_{i}, a_{i}) = \epsilon^{L} \ln(\pi_{j}(z_{i}, a_{i})) + a_{i}$$

+ $\beta(1 - \delta) \left(p_{n} \max\{V(z_{i+}, a_{i}), \tilde{U}(z_{i+}, a_{i})\} + (1 - p_{n}) \max\{V(z_{i-}, a_{i}), \tilde{U}(z_{i-}, a_{i})\} \right)$

Model Discussion

- In the model, competition operates as a skill-biased force.
- For insights, let labor supply *L* be constant. The firms' static problem yields the following equilibrium condition

$$\ln(L_j) = \frac{\epsilon^L}{1 + \epsilon^L} \ln(z_j) + \frac{1}{1 + \epsilon^L} a_j + C$$

• Then

$$\frac{L(\bar{z},a)}{L(\underline{z},a)} = \left(\frac{\bar{z}}{\underline{z}}\right)^{\frac{\epsilon^{L}}{1+\epsilon^{L}}} \text{ and } \frac{L(z,\bar{a})}{L(z,\underline{a})} = \left(\frac{\bar{a}}{\underline{a}}\right)^{\frac{1}{1+\epsilon^{L}}}$$

 Higher elasticities ⇒ reallocation of labor away from high amenity and toward high productivity firms. • Equilibrium profits are

$$\pi_j(z_j, a_j) = z_j \left[\ln(L_j) - \frac{\epsilon^L}{1 + \epsilon^L} \right] - c_f$$

• We show

$$\frac{\partial [\pi_j(z,\bar{a}) - \pi_j(z,\underline{a})]}{\partial \epsilon^L} \leq 0 \text{ and } \frac{\partial [\pi_j(\bar{z},a) - \pi_j(\underline{z},a)]}{\partial \epsilon^L} \geq 0$$

 Higher elasticities ⇒ reallocation of profit away from high amenity and toward high productivity firms.

- Through reallocation of employment and profits across types there is a reallocation of entrepreneurship and investment:
 - Away from high amenity and toward high productivity agents.

Calibration

- We calibrate the model to the Netherlands, one of the richest countries in our sample.
- 6 parameters are internally calibrated by targeting 6 salient moments. Model fit:
- Untargeted distributions achieve a good fit.

Firm Dynamics and Monopsony

 Using our calibrated model, we create counterfactual economies by changing only the labor supply elasticity to get markdowns ranging from 1.25 to 2.25.

Cross Country Income Differences

• Using our calibrated model, we create counterfactual economies by changing only the labor supply elasticity to get markdowns corresponding to other countries in the sample.

- To explore the mechanisms in the model, we compare the benchmark to a single counterfactual economy with e^L set to match the median markdown in Greece (2.62 vs 1.3).
 - Greece is one of the poorest countries in our sample and has one of the highest estimated markdowns.

	Netherlands Benchmark (1)	Greece Counterfactual (2)	Greece Data (3)	Explained (4)
Share entrepreneurs invest	0.32	0.22	0.11	45.5%
Mean firm size	33.18	30.90	17.87	14.9%
Mean firm age	28.57	25.16	18.90	35.2%
Mean employment growth	1.17	0.50	0.68	138.1%
GDPpc	1.00	0.65	0.54	74.5%

Horse Race - Source of Output Losses

- How much do the channels matter? We do a horse-race exercise:
 - About 63% of losses in output attributable to static labor misallocation.
 - 14% of losses attributable to distortions in innovation policies.
 - 23% of losses attributable to distorted selection into entrepreneurship.

	Baseline	Greece (Fixed Entry and Investment)	Greece (Fixed	Greece
			Entry)	
	(1)	(2)	(3)	(4)
Log GDPpc	1.00	0.78	0.73	0.65
%	0	63	77	100

Mechanisms - Employment and Profits

Employment (log-difference)

Mechanisms - Entrepreneurship Policy Function

Amenities *a_j*

Amenities a_j

Mechanisms - Investment Policy Function

Baseline Investment Policy $\rho^{z}(z, a)$ Policy $\rho^{z}(z, a)$

Amenities *a_i*

Amenities a_j

Counterfactual Investment

Conclusions

- We study how labor market power affects differences in firm dynamics and aggregate income across countries.
- To do so we build a dynamic equilibrium model of neoclassical monopsony with occupational choice.
- Calibrated to the Netherlands, counterfactuals with different degrees of labor market competition explain sizeable fractions of the differences in firm dynamics.
- Through the lens of the model, differences in monopsony in labor markets explain up to 42 percent of differences in income between middle and high income countries.

Appendix

Markdown Estimation

 We construct wage markdowns, μ_{it} for firm i at time t as a ratio between the firm-level marginal revenue product of labor and the wage paid (Yeh et al., 2022)

$$u_{it} = \frac{MRPL_{it}}{w_{it}}$$

• We assume a Cobb-Douglas specification

 $\ln(y_{it}) = \alpha + \beta \ln(I_{it}) + \gamma \ln(k_{it}) + \delta \ln(m_{it}) + \omega_{it} + \epsilon it$

• And follow Levinsohn and Petrin (2003) to estimate

$$\ln(y_{it}) = \alpha + \beta \ln(l_{it}) + \phi(l_{it}, k_{it}, m_{it}) + \epsilon_{it}$$

where ϕ includes capital, materials and the inverse of the demand function for materials w.r.t. ω_{it} .

• Then $MRPL_{it} = \hat{\beta} \frac{y_{it}}{l_{it}}$

Alternative Investment Measures

back

Growth Conditional on Age

Table 1: Targets and Fit

Targets	Data	Model
Average firm size	34.71	33.06
Log firm size dispersion	0.994	1.045
Average employment growth rate	1.321	1.155
Average firm age	28.93	28.25
Log wage dispersion	0.520	0.560
Firms investing in R&D, %	0.299	0.320

back

Model: Equilibrium

- An equilibrium is a set of value functions V(z, a), U(z, a, z_j, a_j) and Ũ(z, a), associated policy functions ρ^e(z, a) and ρ^h(z, a), a wage schedule W_j(z, a), an allocation of labor supply L_j(z, a), an aggregate measure of workers L and a stationary distribution of agents Ω(z, a), such that:
 - 1. The value functions attain their maximum and the policy functions are the solution to the corresponding problems.
 - 2. Aggregate measure of workers is consistent with entrepreneurial choice:

$$L = \int_{\mathcal{Z} \times \mathcal{A}} (1 - \rho^{e}(z, a)) d\Omega(z, a)$$

3. The distribution of agents $\Omega(z, a)$ is stationary.

Model: Solution Algorithm

- 1. Guess a distribution $\Omega(z, a)$.
 - 1.1 Guess the entrepreneurship policy function $\rho^{e}(z, a)$.
 - 1.2 Using $\Omega(z, a)$ and $\rho^{e}(z, a)$, compute $\phi(z, a)$, $\mu(z, a)$, L and E.
 - 1.3 Solve for the fixed point of the value functions.
 - 1.4 Using V and \tilde{U} , update $\rho^e(z, a)$. Iterate on ρ^e until convergence.
- 2. Update $\Omega(z, a)$ by solving for the stationary distribution implied by the law of motion:

$$\begin{split} [\delta + (1 - \delta)\rho^{e}(z, a)\rho^{z}(z, a)]\Omega(z, a) &= \\ \delta \Psi(z, a) + (1 - \delta)\rho^{e}(z_{-1}, a)\rho^{z}(z_{-1}, a)\Omega(z_{-1}, a) \end{split}$$

3. Iterate until convergence.