Labor Market Competition and Inequality

Jose Garcia-Louzao¹ Alessandro Ruggieri²

¹Lietuvos Bankas, Vilnius University, and CESifo

²CUNEF Universidad

Simposio de la Asociación Española de economía @ Mallorca December 2024

The views expressed here do not necessarily reflect the position of the Lietuvos Bankas or the Eurosystem

Labor market inequality

- Traditional (competitive) view of wage inequality \rightarrow you earn what you are
 - supply side, e.g., schooling
 - demand side, e.g., biased technological change
 - institutions, e.g., minimum wage

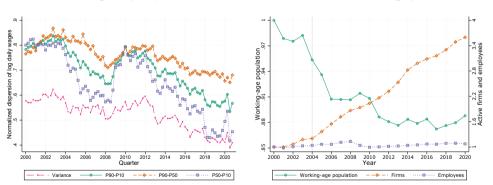
Labor market inequality and firms

- Traditional (competitive) view of wage inequality \rightarrow you earn what you are
 - supply side, e.g., schooling
 - demand side, e.g., biased technological change
 - institutions, e.g., minimum wage
- Firms \neq price takers \rightarrow place them at the center academic and policy debate
 - wage differences across firms, regardless of the "who" (Card, Cardoso, Heining, and Kline, 2018)
 - employer market power is a global phenomenon (Manning, 2021, Armangué-Jubert, Guner, and Ruggieri, 2024)

Labor market inequality and firms

- Traditional (competitive) view of wage inequality \rightarrow you earn what you are
 - supply side, e.g., schooling
 - demand side, e.g., biased technological change
 - institutions, e.g., minimum wage
- Firms \neq price takers \rightarrow place them at the center academic and policy debate
 - wage differences across firms, regardless of the "who" (Card, Cardoso, Heining, and Kline, 2018)
 - employer market power is a global phenomenon (Manning, 2021, Armangué-Jubert, Guner, and Ruggieri, 2024)
- Monopsony theory: labor market power gives firms the power to set wages → higher degree of wage inequality (Robinson, 1933; Burdett and Mortensen, 1998; Manning, 2003)

This paper in a nutshell

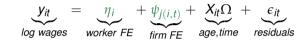

- Does wage inequality and labor market competition evolve together?
 - cross-sectional evidence suggests higher inequality in less competitive markets (e.g., Weber, 2015; Bassier, 2023)
 - what about the dynamics? This paper

This paper in a nutshell

- Does wage inequality and labor market competition evolve together?
 - cross-sectional evidence suggests higher inequality in less competitive markets (e.g., Weber, 2015; Bassier, 2023)
 - what about the dynamics? This paper
- Using Lithuanian Social Security data spanning two decades
 - 1. the role of firm-specific wage components in wage inequality over development
 - firms explain almost entirely the dynamics of inequality along the development path
 - 2. the evolution of labor market competition over economic growth
 - negative gradient between firm's labor market power and economic growth
 - 3. do they move together?
 - simple accounting exercise suggests could contribute to about 17%
 - 4. our suspect: EU accession
 - not today... work in progress

Why Lithuania?

Wage inequality



Labor market demographics

more stylized facts

Firms and workers in the variance of wages

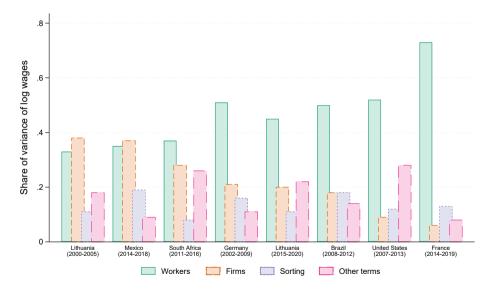
From the AKM model (Abowd, Kramarz, and Margolis, 1999)

to the variance decomposition

$$var(y_{it}) = var(\eta_i) + var(\psi_{j(i,t)}) + var(X_{it}\Omega) + var(\epsilon_{it}) + 2 \times \left[\underbrace{cov(\eta_i, \psi_{j(i,t)})}_{sorting} + cov(\eta_i, X_{it}\Omega) + cov(\psi_{j(i,t)}, X_{it}\Omega)\right]$$

identifying assumptions

Social Security data


- Administrative data from the State Social Insurance Fund Board (SoDra)
 - 25% random sample of the Social Security population in 2000-2020
 - workers: identifier, gender, age, employment status, length of the employment relationship, insured labor income but no hours or education info!
 - firms: identifier, location, sector, wage bill, and firm size at the end of the year

Social Security data

- Administrative data from the State Social Insurance Fund Board (SoDra)
 - 25% random sample of the Social Security population in 2000-2020
 - workers: identifier, gender, age, employment status, length of the employment relationship, insured labor income but no hours or education info!
 - firms: identifier, location, sector, wage bill, and firm size at the end of the year
- Estimation sample
 - quarterly panel of private sector workers, 2000Q1 to 2020Q4
 - main job workers employed for ${\geq}15 \text{days}$ & earning ${\geq}0.5{\times}\text{monthly}$ MW in a quarter
 - wage metric: real daily wages = quarterly labor earnings / days worked in the quarter
 - cleaned data: 532,500 workers in 143,177 firms over 16,735,075 observations
 - connected set: 526,549 workers in 137,514 firms over 16,637,948 observations

summary statistics

Contribution of firms and workers to inequality resembles development

time-varying effects

estimation sample le

leave-one-out estimator

firm clusters

Compression of firm-specific wage components key factor behind the fall in inequality

	2000	-05 to 20	15-20
	AKM	KSS	BLM
Change in $Var(y)$	-0.131	-0.136	-0.123
Contribution			
$Var(\eta)$	-0.088	-0.043	-0.233
$Var(\psi)$	0.898	0.930	0.639
$Var(X\Omega)$	-0.067	-0.068	-0.148
$Var(\epsilon)$	0.058	0.059	0.096
$2 \times Cov(\eta, \psi)$	0.184	0.109	0.504
$2 \times Cov(\eta, X\Omega)$	0.036	0.038	0.121
$2 \times Cov(\psi, X\Omega)$	-0.021	-0.024	0.022
Counterfactual change in $Var(y)$			
1. Fixed variance of firm effects	-0.013	-0.017	-0.045
2. Fixed corr. of firm and worker effects	-0.117	-0.150	-0.109
3. Both 1 and 2	0.012	-0.024	0.024

What can be behind this decline?

- Structural transformation: reallocation of labor towards sectors with lower dispersion of pay policies
 - FHK decomposition suggests is a within-sector phenomenon
 FHK

What can be behind this decline?

- Structural transformation: reallocation of labor towards sectors with lower dispersion of pay policies
 - FHK decomposition suggests is a within-sector phenomenon
- Policy: truncated pay distribution due to cumulative increase of the minimum wage ${\sim}x3$ in nominal terms
 - no clear correlation between more affected sectors and larger declines in firm-drive inequality MW

What can be behind this decline?

- Structural transformation: reallocation of labor towards sectors with lower dispersion of pay policies
 - FHK decomposition suggests is a within-sector phenomenon
 FHK
- Policy: truncated pay distribution due to cumulative increase of the minimum wage ${\sim}x3$ in nominal terms
 - no clear correlation between more affected sectors and larger declines in firm-drive inequality MW
- Labor market competition?
 - monopsony theory: employer market power and firm-driven inequality are closely linked

Monopsony power and firm-driven wage inequality

- Dynamic monopsony model a la Manning (2003, 2021)
 - firms are heterogeneous in their productivity, *z_{jt}*
 - production function w/ decreasing returns to (homogeneous) labor, L_{jt}
 - firms face an upward-sloping labor supply curve labor that depends on recruitment, R(wjt), and separation, s(wjt) rates
- Optimal labor demand condition can be rearranged to show that

$$var[\log w_{jt}] \approx \left(\frac{1}{1+\varepsilon_t}\right)^2 var[\log z_{jt}]$$
 with $\varepsilon_t = \varepsilon_{Rt} - \varepsilon_{sept}$

- ε is elasticity of labor supply to wages of firm j
 - competitive model: $\varepsilon = \infty \Rightarrow$ the law of one price
 - imperfect competition: $\varepsilon < \infty \Rightarrow$ firm-specific wages result in firm-driven wage inequality
 - higher competition \implies lower firm-driven inequality
- Does labor market competition increased?

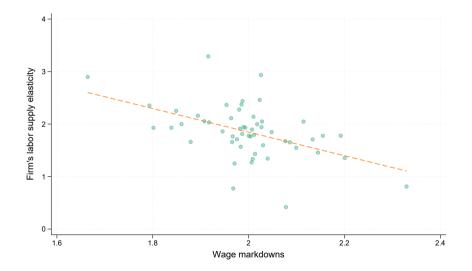
Estimating the firm labor supply elasticity \equiv labor market competition

$$P(s_{ijt} = 1) = \alpha + \beta \log w_{ijt} + X_{ijt}\Lambda + \xi_{ijt}$$

- s_{ijt} stands for the separation of worker *i* from employer *j* at quarter *t*
 - all separations and EE transitions at a quarterly frequency
- w_{ijt} is the corresponding wage measure
 - worker's wage or firm-specific wage component
- X_{iit} is a vector of controls
 - estimated AKM worker fixed effect + age, gender, industry, and time effects
- ξ_{ijt} is the error term

• Firm labor supply elasticity
$$\equiv -2 \times \frac{\hat{\beta}}{s_{ijt}}$$
 (Manning, 2003)

The firm's labor supply elasticity has increased over the last two decades


A. 2000-2005	005 Worker wage		Firm fixe	ed effect	IV-Firm fixed effect			
	Sep	EE Sep	Sep	EE Sep	Sep	EE Sep		
	(1)	(2)	(3)	(4)	(5)	(6)		
β	-0.0601	-0.0250	-0.0485	-0.0220	-0.0800	-0.0433		
	(0.0004)	(0.0003)	(0.0019)	(0.0010)	(0.0024)	(0.0014)		
ε _{LS}	1.0329	0.9747	0.8327	0.8561	1.3746	1.6861		
	(0.0068)	(0.0104)	(0.0083)	(0.0125)	(0.0417)	(0.0556)		
First stage F-statistic					-,	2.27		
Observations	4,149,923	4,149,923	4,149,923	4,149,923	4,149,923	4,149,923		
B. 2015-2020	Worker wage		Firm fixed effect		IV-Firm fi	IV-Firm fixed effect		
	Sep	EE Sep	Sep	EE Sep	Sep	EE Sep		
	(1)	(2)	(3)	(4)	(5)	(6)		
β	-0.0773	-0.0289	-0.0565	-0.0246	-0.0979	-0.0507		
,	(0.0005)	(0.0003)	(0.0015)	(0.0009)	(0.0023)	(0.0013)		
ε _{LS}	1.3693	1.1145	1.0007	0.9478	1.7340	1.9514		
20	(0.0216)	(0.0220)	(0.0265)	(0.0125)	(0.0415)	(0.0519)		
First stage F-statistic					13,757.87			
Observations	4,404,064	4,404,064	4,404,064	4,404,064	4,404,064	4,404,064		

complementary log-log alternative set of controls

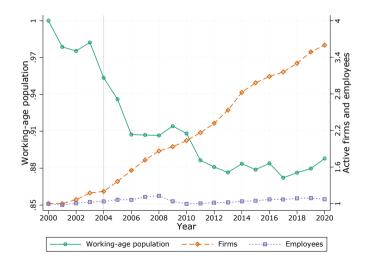
FLSE increasing likely to reflect competition rather than LM segmentation or concentration

- Worker heterogeneity can lead to market segmentation, affecting FLSE without real changes in competition
 - FLSE increased for both workers below and above the median of AKM worker FEs skill-specific flse
- With strategic interaction between employers as in Berger et al., 2022, FLSE can increase due to MW-induced changes in concentration
 - no correlation between ↑ FLSE and ∆wage bill-HHI or MW incidence firm granularity MW incidence

Elasticities resemble markdowns from producers data \rightarrow competition increased

Did labor market competition and firm-drive inequality move together?

 $\Delta \mathsf{var}_{st}[\psi_j] = \alpha + \beta \Delta \varepsilon_{st} + X_{st} \Omega + v_{st}$


- $\Delta var_{st}[\psi_i]$ sector-specific changes in the variance of firm FE, 2000-05 to 2015-20
- $\Delta \varepsilon_{st}$ sector-specific changes in firm's labor supply elasticity, 2000-05 to 2015-20
- X sector-specific vector of controls
 - "model-based" \equiv firm's labor supply elasticity in 2015-20 + changes in firm's size dispersion
 - minimum wage workers in 2000-05, account for sustained MW hikes and potential reallocation effects (Dustmann et al., 2021)
 - changes in LM concentration, account for market structure dynamics and its impact on wage inequality (Deb et al., 2024)

Dispersion of firm pay policies negatively correlated with LM competition

$\Delta \operatorname{Var}(\psi_i)$								
	A	ll seperatio	ns		Job-to-job			
	OLS	OLS	ORIV	OLS	OLS	ORIV		
	(1)	(2)	(3)	(4)	(5)	(6)		
Δ Firm LSE	-0.0128	-0.0137	-0.0379	-0.0126	-0.0146	-0.0422		
	(0.0047)	(0.0059)	(0.0180)	(0.0042)	(0.0043)	(0.0227)		
Implied % Δ in inequality	5.7	6.1	16.9	6.2	7.1	20.6		
Model-based controls	\checkmark			\checkmark				
Full set of controls		\checkmark	\checkmark		\checkmark	\checkmark		
No. sectors	74	74	74	74	74	74		

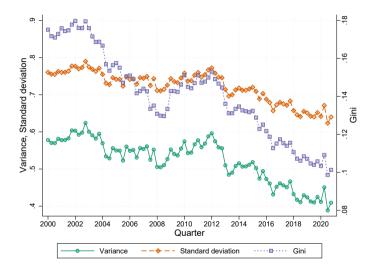
counterfactual calculation no correlation w/ WFE or sorting correlation stronger P50-P10 of FFE

Tightening labor market (LS \downarrow & LD \uparrow) after EU accession potential trigger for increased competition [*in progress*]

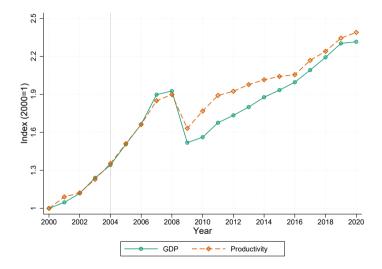
Taking stock

- Three main findings
 - firms play a critical role in declining inequality over Lithuania's development
 - labor market competition increased with economic growth
 - implied change in inequality due to the co-movement with competition = 17-20%
- Wage inequality can be consequence of market failures → labor market and competition policies can help tackle inequality and increase welfare
- Next step: link EU accession (outside options) and increases in competition

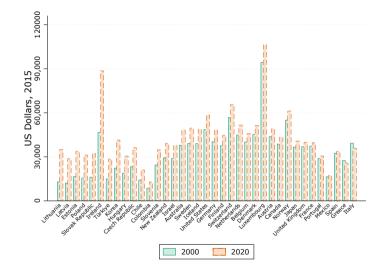
APPENDIX

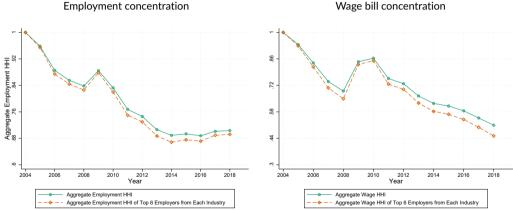

Lithuanian context to test whether labor market competition affects inequality

- The economy more than doubled in size ightarrow from low- to high-income country growth
- Sharp decline in wage inequality, e.g., Gini halved between 2000 and 2020 Gini and co.
 - MW flagship policy to boost income at the bottom, increased by ${\sim}235\%$ in real terms
- Critical changes in the labor market since joining the EU in 2004
 - (labor) market concentration has been steadily declining HHL
 - the number of firms per worker as well as the labor share have risen
 - wage markdowns declining, despite price markups going up (Ding, Garcia-Louzao, and Jouvanceau, 2023)
 - flexicurity reforms in 2017

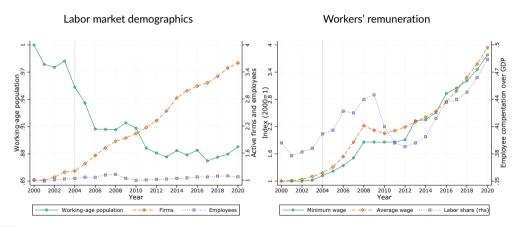

Contribution to the state of knowledge

- Firms explain around 20% of wage dispersion in developed economies and even more in developing countries (Card et al., 2013; Card et al. 2018; Alvarez et al., 2018; Song et al., 2019; Perez Perez and Nuno-Ledesma, 2022; Bassier, 2023)
 - + dynamics of firm-driven wage dispersion over the course of a country's development
- Measuring labor market power and its dynamics (Hirsch et al., 2018; Azar et al., 2022; Bassier et al., 2022; Lamadon et al., 2022; Diez et al., 2022; Webber, 2022; Armangue-Jubert et al., 2023)
 - + labor market competition in a context of economic growth
- Labor market power and wages (Webber 2015; Bassier, 2023; Autor et al., 2023; Deb et al., 2024)
 - + labor market competition as a driver of inequality
- Decreasing inequality in CEE typically linked to minimum wage legislation (Magda et al., 2021, Garcia-Louzao and Tarasonis, 2023)
 - + complementary explanation coming from market forces: competition


The fall of inequality under alternative indices


The Lithuanian economy experienced extraordinary economic growth

Among OECD countries, Lithuania experienced the largest growth in GDPpc



Labor market concentration computed from balance sheet data has been steadily decreasing

Wage bill concentration

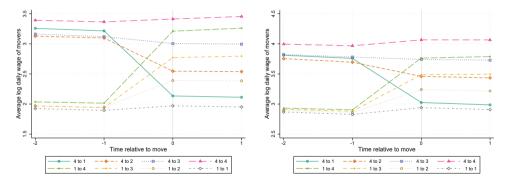
EU accession unleashed in-house potential for new firms and created opportunities abroad for workers: LS \downarrow & LD \uparrow

Identification of worker and firm effects

- Connected set
 - only connected firms and their workers contribute to the identification
 - connected firms \equiv firms through which workers move
- Identifying assumptions
 - al exogenous mobility \rightarrow no correlation between mobility and the time-varying component of the residual
 - a2 additive separability \rightarrow no interaction of worker and firm heterogeneity
- Limited mobility bias
 - sufficient mobility to quantify the dispersion of firm-specific wage components
 - s1 KSS leave-one-out estimator to correct the bias (Kline et al., 2020)
 - s2 BLM firm-clusters to reduce dimensionality (Bonhomme et al., 2019, 2022)
- back

Summary statistics: Cleaned sample and connected set

	2000-2020		2000)-2005	2015-2020		
	Cleaned data	Connected set	Cleaned data	Connected set	Cleaned data	Connected set	
Wages							
Mean	2.905	2.909	2.525	2.539	3.252	3.278	
Std.Dev.	0.779	0.777	0.764	0.759	0.679	0.667	
Firms	143,461	137,783	64,509	56,698	78,103	62,387	
Direct movers	296,159	295,942	124,873	124,425	124,595	123,530	
Movers	391,670	391,229	173,540	172,827	165,418	163,837	
Workers	532,495	526,536	330,161	320,625	333,238	314,337	
Direct moves	815,911	815,539	218,456	217,821	233,805	232,016	
Job changes	1,399,550	1,398,910	341,133	340,191	349,526	347,079	
Worker-guarters	16,735,572	16,638,459	4,510,485	4,409,926	4,957,606	4,696,179	


Firm and worker heterogeneity explain two-thirds of cross-sectional inequality

	AKM		KSS	KSS		BLM	
	Component	Share	Component	Share	Component	Share	
Var(y)	0.604	-	0.595	-	0.606	-	
$Var(\eta)$	0.165	0.274	0.156	0.263	0.203	0.335	
$Var(\psi)$	0.189	0.312	0.171	0.287	0.092	0.153	
$Var(X\Omega)$	0.089	0.147	0.089	0.149	0.066	0.110	
$Var(\epsilon)$	0.121	0.200	0.121	0.204	0.148	0.245	
$2 \times Cov(\eta, \psi)$	0.041	0.068	0.053	0.088	0.078	0.129	
$2 \times Cov(\eta, X\Omega)$	-0.002	-0.004	-0.003	-0.005	-0.007	-0.012	
$2 \times Cov(\psi, X\Omega)$	0.002	0.003	0.003	0.004	0.024	0.040	

Wage changes after a switch by quarterly of firm fixed effects are near symmetric

(a) 2000-2005

(b) 2015-2020

Average residuals by deciles of worker and firm fixed effects suggest that match effects are not critical

	- 9		+0.02	-0.03	-0.01	0.01	0.00	0.01	0.01	0.01	0.00	0.00
	o -		-0.01	-0.03	-0.02	-0.01	0.01	0.01	0.01	0.01	0.00	0.00
e	∞ -		0.00	-0.01	-0.02	-0.01	0.01	0.01	0.01	0.00	0.00	0.00
effect decile			0.01	-0.00	-0.01	-0.01	0.00	0.00	0.00	0.00	0.00	0.00
	9 -		0.00	0.01	-0.01	-0.01	-0.00	0.00	0.00	0.00	0.00	0.00
Worker fixed	- n		0.00	0.01	0.00	-0.01	-0.01	-0.00	-0.00	0.00	-0.00	0.00
orker	4 -		+0.00	0.02	0.01	-0.00	-0.01	-0.01	-0.01	-0.00	0.00	-0.00
Š	ო -		+0.00	0.01	0.02	0.00	-0.00	-0.01	-0.01	-0.01	-0.00	-0.01
	~ -		0.01	-0.00	0.02	0.01	-0.00	-0.01	-0.01	-0.01	-0.01	-0.01
			0.03	-0.00	0.00	0.01	0.00	-0.00	+0.00	-0.01	-0.02	-0.01
		Ľ										
			1	2	3	4	5	6	7	8	9	10
					F	Firm f	ixed e	effect	decile	Э		

(a) 2000-2005

(b) 2015-2020

	1											
	- 9	-0.00	-0.00	0.00	0.01	0.01	0.00	0.00	0.00	-0.00	-0.00	
	о -	-0.00	-0.01	0.00	0.00	0.01	0.00	0.00	0.00	-0.00	-0.00	
0	∞ -	0.00	-0.01	-0.01	0.00	0.00	0.00	0.00	0.00	-0.00	0.00	
effect decile		0.00	-0.00	-0.00	-0.00	0.00	0.00	0.00	0.00	0.00	0.00	
effed	9 -	0.00	-0.01	-0.00	-0.00	-0.00	0.00	0.00	0.00	0.00	0.00	
Worker fixed	- <u>۲</u>	0.01	-0.00	-0.00	-0.01	-0.00	0.00	+0.00	0.00	0.00	0.01	
orker	4 -	0.01	0.00	-0.00	-0.00	-0.00	+0.00	-0.00	0.00	0.00	0.00	
Ň	e -	0.01	0.01	0.00	-0.00	-0.00	+0.00	+0.00	-0.00	-0.00	-0.00	
	- 5	-0.01	0.01	0.00	0.00	-0.00	-0.01	-0.00	-0.00	0.00	0.00	
		-0.01	0.00	0.00	0.00	0.00	-0.00	-0.00	-0.00	0.00	-0.00	
	l		_	_		1	_	_	_	_	-	
		1	2	3	−irm f	5		7	8	9	10	
					-irm i	ixed e	enect	decile	9			

Contribution of workers and firms under alternative specifications of time-varying effects

	Sex-specific ti	me effects	Wages cer	ntered	Residual w	ages
	Component	Share	Component	Share	Component	Share
Var(y)	0.604	-	0.518	-	0.511	-
$Var(\eta)$	0.170	0.281	0.164	0.317	0.163	0.319
$Var(\psi)$	0.189	0.313	0.190	0.367	0.188	0.368
$Var(X\Omega)$	0.090	0.149	0.007	0.013	-	-
$Var(\epsilon)$	0.120	0.199	0.121	0.234	0.121	0.238
$2 \times Cov(\eta, \psi)$	0.042	0.069	0.041	0.080	0.039	0.077
$2 \times Cov(\eta, X\Omega)$	-0.007	-0.011	-0.004	-0.007	-	-
$2 \times Cov(\psi, X\Omega)$	0.001	0.001	-0.001	-0.002	-	-

Contribution of workers and firms under alternative sample selection

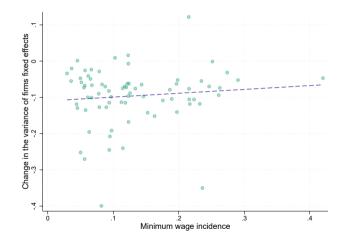
	LM attach	ment	MW		Public se	ctor	No welfare b	enefits
	Component Share		Component	Share	Component	Share	Component	Share
Var(y)	0.618	-	0.395	-	0.564	-	0.608	-
$Var(\eta)$	0.178	0.289	0.146	0.369	0.183	0.325	0.169	0.300
$Var(\psi)$	0.205	0.332	0.102	0.259	0.148	0.263	0.205	0.364
$Var(X\Omega)$	0.088	0.143	0.077	0.194	0.088	0.156	0.100	0.177
$Var(\epsilon)$	0.117	0.189	0.067	0.171	0.115	0.203	0.099	0.175
$2 \times Cov(\eta, \psi)$	0.031	0.050	0.018	0.045	0.034	0.060	0.041	0.072
$2 \times Cov(\eta, X\Omega)$	-0.003	-0.004	-0.005	-0.014	-0.007	-0.012	-0.004	-0.007
$2 \times Cov(\psi, X\Omega)$ 0.000		0.001	-0.009	-0.023	0.002	0.004	-0.002	-0.003

Contribution of workers and firms under alternative wage definitions to classify firms

	BLM w/ worke	er variables	BLM w/ firm	variables
	Component	Share	Component	Share
Var(y)	0.607	-	0.607	-
$Var(\eta)$	0.195	0.322	0.251	0.415
$Var(\psi)$	0.103	0.170	0.074	0.122
$Var(X\Omega)$	0.082	0.136	0.083	0.137
$Var(\epsilon)$	0.145	0.238	0.153	0.252
$2 \times Cov(\eta, \psi)$	0.078	0.128	0.044	0.072
$2 \times Cov(\eta, X\Omega)$	-0.004	-0.007	-0.007	-0.011
$2 \times Cov(\psi, X\Omega)$	0.008	0.013	0.009	0.015

Contribution of workers and firms under alternative number of firm clusters

	BLM 15	50	BLM 50	00	BLM 25	00
	Component	Share	Component	Share	Component	Share
Var(y)	0.606	-	0.606	-	0.606	-
$Var(\eta)$	0.212	0.349	0.204	0.337	0.204	0.336
$Var(\psi)$	0.088	0.145	0.091	0.151	0.094	0.154
$Var(X\Omega)$	0.068	0.112	0.067	0.110	0.067	0.111
$Var(\epsilon)$	0.150	0.247	0.149	0.245	0.148	0.244
$2 \times Cov(\eta, \psi)$	0.074	0.121	0.078	0.129	0.077	0.127
$2 \times Cov(\eta, X\Omega)$	-0.007	-0.012	-0.007	-0.012	-0.007	-0.012
$2 imes \textit{Cov}(\psi, X\Omega)$	$\times Cov(\psi, X\Omega)$ 0.023 0.038		0.024	0.040	0.024	0.040


Contribution of workers and firms under alternative leave-one-out units

	Leave-out-ob	servations	Leave-out-w	vorkers	
	Component	Share	Component	Share	
Var(y)	0.599	-	0.595	-	
$Var(\eta)$	0.157	0.263	0.156	0.263	
$Var(\psi)$	0.177	0.295	0.171	0.287	
$Var(X\Omega)$	0.088	0.148	0.089	0.149	
$Var(\epsilon)$	0.121	0.202	0.121	0.204	
$2 \times Cov(\eta, \psi)$	0.050	0.084	0.053	0.089	
$2 \times Cov(\eta, X\Omega)$	-0.003	-0.004	-0.003	-0.005	
$2 \times Cov(\psi, X\Omega)$	0.002	0.004	0.003	0.004	

Sectoral decomposition

		AKM		BLM
	Estimate (1)	Contribution (%) (2)	Estimate (3)	Contribution (%) (4)
Change in $Var(y)$	-0.131	-	-0.136	-
Change in $Var(\psi)$	-0.118	89.8	-0.127	93.0
Between-sector	0.016	-12.1	0.006	-4.5
Within-sector	-0.134	112.1	-0.133	104.5

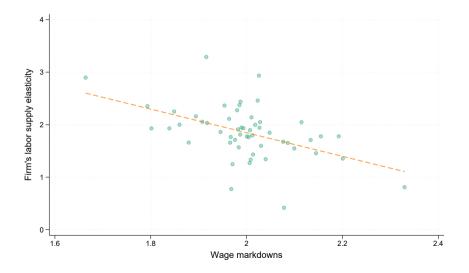
Variance of firm fixed effects vs MW

Separation elasticity using a complementary log-log model

A. 2000-2005	Worke	er wage	IV-Firm fi	xed effect
	Sep	EE Sep	Sep	EE Sep
Esep	-0.5550	-0.4747	-0.6712	-0.7611
,	(0.0034)	(0.0046)	(0.0366)	(0.0481)
Observations	4,149,923	4,149,923	4,149,923	4,149,923
B. 2015-2020	Worke	er wage	IV-Firm fi	xed effect
	Sep	EE Sep	Sep	EE Sep
Esep	-0.6692	-0.5086	-0.8459	-0.8666
	(0.0037)	(0.0050)	(0.0203)	(0.0224)
Observations	4,404,064	4,404,064	4,404,064	4,404,064

Separation elasticity using alternative controls

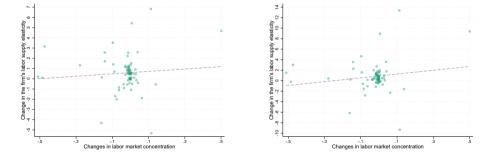
A. 2000-2005				Worke	r wage							IV-Firm fi	xed effect			
	Sep	EE Sep	Sep	EE Sep	Sep	EE Sep										
Esep	-0.0475	-0.0209	-0.0622	-0.0269	-0.0598	-0.0249	-0.0647	-0.0191	-0.0627	-0.0379	-0.0815	-0.0472	-0.0794	-0.0431	-0.0989	-0.0460
	(0.0004)	(0.0003)	(0.0004)	(0.0003)	(0.0004)	(0.0003)	(0.0003)	(0.0002)	(0.0022)	(0.0014)	(0.0023)	(0.0015)	(0.0024)	(0.0014)	(0.0024)	(0.0014)
Observations	4,149,923	4,149,923	4,149,923	4,149,923	4,149,923	4,149,923	4,149,923	4,149,923	4,149,923	4,149,923	4,149,876	4,149,876	4,149,923	4,149,923	4,149,923	4,149,923
A. 2015-2020				Worke	r wage							IV-Firm fi	xed effect			
	Sep	EE Sep	Sep	EE Sep	Sep	EE Sep										
Esep	-0.0684	-0.0254	-0.0795	-0.0298	-0.0766	-0.0288	-0.0750	-0.0222	-0.0851	-0.0457	-0.1062	-0.0666	-0.0969	-0.0503	-0.1394	-0.0601
	(0.0004)	(0.0003)	(0.0005)	(0.0003)	(0.0005)	(0.0003)	(0.0004)	(0.0002)	(0.0021)	(0.0013)	(0.0025)	(0.0015)	(0.0023)	(0.0013)	(0.0026)	(0.0015)
Observations	4,404,064	4,404,064	4,404,064	4,404,064	4,404,064	4,404,064	4,404,064	4,404,064	4,404,064	4,404,064	4,404,024	4,404,024	4,404,064	4,404,064	4,404,064	4,404,064
Tenure FE	Y	Y	N	N	N	N	N	N	Y	Y	N	N	N	N	N	N
Sector×Municipality FE	N	N	Y	Y	N	N	N	N	N	N	Y	Y	N	N	N	N
Family controls	N	N	N	N	Y	Y	N	N	N	N	N	N	Y	Y	N	N
AKM worker type	Y	Y	Y	Y	Y	Y	N	N	Y	Y	Y	Y	Y	Y	N	N

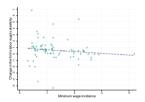

Elasticity for workers with FE below median

A. 2000-2005	Worke	r wage	Firm fixe	ed effect	IV-Firm fi	IV-Firm fixed effect		
	Sep	EE Sep	Sep	EE Sep	Sep	EE Sep		
	(1)	(2)	(3)	(4)	(5)	(6)		
β	-0.0674	-0.0235	-0.0552	-0.0241	-0.0856	-0.0451		
	(0.0007)	(0.0004)	(0.0029)	(0.0013)	(0.0036)	(0.0018)		
ϵ_{LS}	0.9520	0.8651	0.7798	0.8872	1.2093	1.6626		
	(0.0092)	(0.0148)	(0.0413)	(0.0462)	(0.0514)	(0.0665)		
First stage F-statistic					2,32	8.86		
Observations	2,074,976	2,074,976	2,074,976	2,074,976	2,074,976	2,074,976		
B. 2015-2020	Worke	r wage	Firm fixe	ed effect	IV-Firm fi	xed effect		
	Sep	EE Sep	Sep	EE Sep	Sep	EE Sep		
	(1)	(2)	(3)	(4)	(5)	(6)		
β	-0.0875	-0.0271	-0.0730	-0.0299	-0.1036	-0.0538		
	(0.0007)	(0.0005)	(0.0021)	(0.0011)	(0.0036)	(0.0019)		
ϵ_{LS}	1.3317	1.0121	1.1122	1.1173	1.5776	2.0090		
20	(0.0112)	(0.0178)	(0.0317)	(0.0428)	(0.0550)	(0.0695)		
First stage F-statistic					9,97	5.29		
Observations	2,202,037	2,202,037	2,202,037	2,202,037	2.202.037	2,202,037		

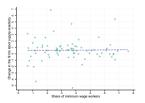
Elasticity for workers with FE above median

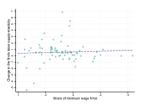
A. 2000-2005	Worke	r wage	Firm fixe	ed effect	IV-Firm fi	IV-Firm fixed effect		
	Sep	EE Sep	Sep	EE Sep	Sep	EE Sep		
	(1)	(2)	(3)	(4)	(5)	(6)		
β	-0.0526	-0.0249	-0.0403	-0.0185	-0.0742	-0.0405		
	(0.0005)	(0.0004)	(0.0015)	(0.0010)	(0.0020)	(0.0014)		
ϵ_{LS}	1.1529	1.0236	0.8842	0.7613	1.6261	1.6690		
	(0.0108)	(0.0148)	(0.0332)	(0.0425)	(0.0430)	(0.0570)		
First stage F-statistic					3,57	6.39		
Observations	2,074,947	2,074,947	2,074,947	2,074,947	2,074,947	2,074,947		
B. 2015-2020	Worke	r wage	Firm fixe	ed effect	IV-Firm fi	xed effect		
	Sep	EE Sep	Sep	EE Sep	Sep	EE Sep		
	(1)	(2)	(3)	(4)	(5)	(6)		
β	-0.0668	-0.0293	-0.0417	-0.0193	-0.0910	-0.0474		
,	(0.0006)	(0.0004)	(0.0014)	(0.0010)	(0.0021)	(0.0014)		
ϵ_{LS}	1.4158	1.1625	0.8840	0.7665	1.9285	1.8814		
- 10	(0.0134)	(0.0175)	(0.0301)	(0.0394)	(0.0449)	(0.0562)		
First stage F-statistic					10,122.45			
Observations	2,202,027	2,202,027	2,202,027	2,202,027	2,202,027	2,202,027		


Firms' labor supply elasticity and wage markdowns across datasets


Firm granularity: Elasticity vs concentration

(a) All separations


Firm granularity: Elasticity vs MW



(a) MW incidence

(b) MW workers

Contribution of changes in competition to changes in overall wage inequality

The contribution of competition to overall inequality can be calculated as

$$\sum_{s=1}^{S} \frac{L_{st}}{L_t} \hat{\beta}_1 \Delta \varepsilon_{st+1}$$

- *L* is the number of workers
- $\hat{\beta}_1$ is the effect of competition on the variance of firm fixed effects
- ε_s sector-specific firm labor supply elasticity

Changes in labor market competition can explain a reduction in wage inequality through firm-specific wage components equal to

$$0.9 \times \left(\frac{\sum_{s=1}^{S} \frac{L_{st}}{L_t} \hat{\beta}_1 \Delta \varepsilon_{st+1}}{\sum_{s=1}^{S} \frac{L_{st}}{L_t} \Delta \mathsf{var}_{st+1}[\psi_{jt+1}]}\right) \times 100\%$$

Increased competition in the labor market does not affect the dispersion of worker fixed effects or sorting

A. $\Delta var_{st+1}[\eta]$	Worker wage		Iv-Firm fixed effect	
	OLS	IV	OLS	IV
	(1)	(2)	(3)	(4)
Δ Firm LSE	-0.0248	0.0848	-0.0174	-0.0218
	(0.0352)	(0.1108)	(0.0090)	(0.0189)
	Worker wage		IV-Firm fixed effect	
B. $\Delta \text{cov}_{st+1}[\psi, \eta]$	Worke	r wage	IV-Firm fi	xed effect
B. $\Delta \text{cov}_{st+1}[\psi, \eta]$	Worke OLS	r wage IV	IV-Firm fi	xed effect IV
B. $\Delta \text{cov}_{st+1}[\psi, \eta]$				
B. $\Delta \text{cov}_{st+1}[\psi, \eta]$ Δ Firm LSE	OLS	ĪV	OLS	IV
	OLS (1)	IV (2)	OLS (3)	IV (4)
	OLS (1) 0.0121	IV (2) 0.0098	OLS (3) -0.0090	IV (4) 0.0293